Prof. Dr. Peter Koepke, Dr. Philipp Schlicht	Problem sheet 1
--	-----------------

Problem 1 (4 Points). Suppose that κ is an infinite cardinal. Show that $FA_{\kappa}(Q)$ holds for any κ -closed partial order Q.

Problem 2 (4 Points). Show that $FA_{2^{\aleph_0}}(Fn(\aleph_0,\aleph_0,\aleph_0))$ is false.

Problem 3 (6 Points). Let $P = \operatorname{Fn}(\aleph_1 \times \omega, 2, \aleph_0)$ and $p \leq q :\iff p \supseteq q$ for $p, q \in P$. Let G be M-generic on P and $F := \bigcup G$. Let

$$c_{\beta} \colon \omega \to 2, \ c_{\beta}(n) = F(\beta, n)$$

for all $\beta < \omega_1$.

- (a) Show that in M[G], there is an \aleph_1 -sequence of measure 0 sets whose union is \mathbb{R} .
- (b) Show that $\{c_{\beta} \mid \beta < \omega_1\}$ has measure 0 in M[G].

Problem 4 (6 Points). Random forcing \mathbb{P} is defined as the set of Borel subsets p of the real line \mathbb{R} with positive Lebesgue measure $\mu(p) > 0$. Let $p \leq q :\iff p \subseteq q$. Suppose that M is a ground model and let \mathbb{P}^M denote random forcing defined in M.

- (a) Show that (\mathbb{P}, \leq) satisfies the c.c.c.
- (b) Suppose that $\epsilon > 0$, $n \in \omega$, and $p \Vdash_{\mathbb{P}^M}^M \dot{f} : \omega \to \omega$. Prove that there are $q \leq p$ in \mathbb{P}^M and $g_n \in \omega$ such that $q \Vdash \dot{f}(n) \leq g_n$ and $\mu(p-q) < \epsilon$.
- (c) Let $f \leq g \iff \exists n_0 \forall n \geq n_0 f(n) \leq g(n)$ for $f, g \in \omega \omega$. Show that \mathbb{P}^M is ω^{ω} -bounding over M, i.e. if G is M-generic on P and $f \in \omega \omega$ is in M[G], then there is some $g \in \omega \omega$ in M with $f \leq g$.

Please hand in your solutions on Wednesday, October 23 before the lecture.